

243 Jubug-ri, Yangji-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do 449-822, Korea Tel: +82-31-323-6008 Fax: +82-31-323-6010 <u>http://www.ltalab.com</u>

EMC TEST REPORT

Dates of Tests: July 17-20, 2017 Test Report S/N: LR500121707AE Test Site : LTA Co., Ltd.

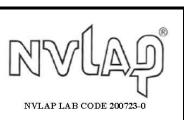
Model No.

APPLICANT

Hanwha Techwin Co., Ltd.

Manufacturing Description	:	NETWORK CAMERA
Manufacturer	:	Hanwha Techwin Co., Ltd.
Model name	:	XNP-6040HP
Additional model name	:	-
Test Device Serial No.:	:	Identification
Directive	:	Electromagnetic Compatibility Directive 2014/30/EU
Rule Part(s)	:	EN 55032:2015
		EN 50130-4:2011+A1:2014
		EN 61000-3-2:2014
		EN 61000-3-3:2013
Data of reissue	:	July 21, 2017

This test report is issued under the authority of:


04

Yong-Cheol, Wang, Manager

Min gi Kang, Test Engineer

The test was supervised by:

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Revision	Date of issue	Test report No.	Description
0	07.21.2017	LR500121707AE	Initial

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	4
2. INFORMATION'S ABOUT TEST ITEM	5
3. TEST REPORT	7
3.1 SUMMARY OF TESTS	7
3.2 EMISSION	8
3.2.1 Disturbance Voltage at the mains terminals	8
3.2.2 Radiated disturbances	18
3.2.3 Harmonic Current Emissions	26
3.2.4 Voltage Fluctuations and Flicker	27
3.3 IMMUNITY	27
3.3.1 Electrostatic discharge	28
3.3.2 RF Electromagnetic Field	29
3.3.3 Electrical fast transients	30
3.3.4 Surge	32
3.3.5 Conducted Disturbances, Induced by Radio-Frequency Fields	35
3.3.6 Main supply voltage dips, short interruptions	37
3.3.7 Main supply voltage variations	38

APPENDIX

APPENDIX A TEST EQUIPMENT USED FOR TESTS	39
APPENDIX B PERFORMANCE CRITERIA	42
APPENDIX C MEASUREMENT UNCERTAINTY	45
APPENDIX D PHOTOGRAPH	48

1. General information's

1-1 Test Performed

Company name	:	LTA Co., Ltd.
Address	:	243, Jubug-ri, Yangji-Myeon, Yongin-Si, Kyunggi-Do, Korea. 449-822
Web site	:	http://www.ltalab.com
E-mail	:	chahn@ltalab.com
Telephone	:	+82-31-323-6008
Facsimile		+82-31-323-6010
Quality control in the test	ting	laboratory is implemented as per ISO/IEC 17025 which is the "General

requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2017-09-30	ECT accredited Lab.
RRA	KOREA	KR0049	-	EMC accredited Lab.
FCC	U.S.A	649054	2019-04-13	FCC CAB
VCCI	JAPAN	R-2133(10 m),	2017-06-21	VCCI registration
		C-2307		
VCCI	JAPAN	T-2009	2017-12-23	VCCI registration
VCCI	JAPAN	G-847	2018-12-13	VCCI registration
IC	CANADA	5799A-1	2019-11-07	IC filing
KOLAS	KOREA	NO.551	2017-01-08	KOLAS accredited Lab.

2. Information's about test item

2-1 Client/ Manufacturer

2-1 Cheny Manufacture	1	
Company name	:	Hanwha Techwin Co., Ltd.
Address	:	1204, Changwon-daero, Seongsan-gu, Chang-won-si, Gyeongsangnam-do, korea
Telephone / Facsimile	:	+82-70-7147-8361
Factory		
Company name		Hanwha Techwin (Tianjin) Co., Ltd
Address		No.11 Weiliu Rd,Micro-Electronic Industrial Park,TEDA,Tianjin,300385,People's Republic of China
<u>2-2 Equipment Under T</u>	est (<u>(EUT)</u>
Class	:	А
Category	:	NETWORK CAMERA
Model name	:	XNP-6040HP
Additional Model Name	:	-
Serial number	:	Identification
Date of receipt	:	July 20, 2017
EUT condition	:	Pre-production, not damaged
Interface ports	:	DC IN, LAN, ALARM, RS485, SPEAKER, MIC
Power rating	:	DC 12 V
Modulator	:	-
Crystal/Oscillator(s)	:	-
Firmware version	:	XXXX
2-3 Modification		
-NONE		
2-4 Model Specification		
-NONE		
2-5 Test conditions		
Temp. / Humid. / Pressure	:	+(24-26) °C / (45-59) %RH / (100) kPa
Tested Model	:	XNP-6040HP
Test mode	:	Capture mode (Adapter, PoE)
Power supply	:	AC 230 V / 50 Hz

NEXT

Equipment	Model No.	Serial No.	Manufacturer
Notebook	P56	N/A	HANSUNG
Speaker	N/A	N/A	N/A
Controller	CNB-SC3100	N/A	CNB
Mobile Phone	IM-A770K	N/A	SKY
Alarm	DS-360	N/A	dmcall
Adapter	24CB022F	N/A	CWT
pture mode (PoE)	· · · · ·	·	
Equipment	Model No.	Serial No.	Manufacturer
Notebook	P56	N/A	HANSUNG
Speaker	N/A	N/A	N/A
Controller	CNB-SC3100	N/A	CNB
Mobile Phone	IM-A770K	N/A	SKY
Alarm	DS-360	N/A	dmcall
Alahii	DD 300	1 1/ 2 1	unicun

N/A

NEXT-PEG4806JT

2-6 Ancillary Equipment / Capture mode (Adapter)

PoE

3. Test Report

3.1 Summary of tests

Parameter	Applied Standard	Status			
I.	I. Emission				
Radiated Emission	EN 55032:2015	С			
Conducted Emission	EN 55032:2015	С			
Harmonic Current Emission	EN 61000-3-2:2014	NA ^{note2}			
Voltage Fluctuations and Flicker	EN 61000-3-3:2013	NA ^{note3}			
II. Immunity					
Electrostatic Discharge	EN 61000-4-2:2009	С			
RF Electromagnetic field	EN 61000-4-3:2006/A2:2010	С			
Fast Transients Common mode	EN 61000-4-4:2012	С			
Surges, line to line and line to ground	EN 61000-4-5:2014	С			
RF common mode	EN 61000-4-6:2014	С			
Voltage dips and Interruptions	EN 61000-4-11:2004	С			
Main supply voltage variations	EN 50130-4:2011	С			

Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

<u>Note 2</u>: We did not test EN61000-3-2 (Harmonic current emissions) for the **XNP-6040HP** because equipment whose rated power is less or equal 75W don't need to be tested.

Note 3: We did not test EN 61000-3-3 (Flicker) for the **XNP-6040HP** because of clause 6.1, this standard Predicate as follows: "Devices which produce no significant voltage dips or flicker with a certain probability have not to be tested."

<u>Note 4</u>: The device is operated by Adapter, PoE Power.

<u>Note 5</u>: The data in this test report are traceable to the national or international standards.

3.2 EMISSION 3.2.1 Conducted emissions

Definition:

The test assesses the ability of the EUT to limit its internal noise from being present on the AC mains Power In/Output ports.

We were performed the test according to LTA procedure LTA-QI-04.

Measurement Frequency range	: 150 kHz - 30MHz
Test method	: EN 55032:2015
Measurement RBW	: 9 kHz
Test mode	: Capture mode (Adapter, PoE)
Result	: Complies

Measurement Data:

- Refer to the Next page (Maximum emission configuration)
- No other emissions were detected at a level greater than 20 dB below limit

A sample calculation:

COR. F (correction factor)= LISN Insertion loss + Cable loss

Emission Level= meter reading + COR.F

Limits for conducted disturbance at the mains ports of class A ITE

Frequency Range	Quasi-peak	Average
(0.15 – 0.5) MHz	79 dBuV	66 dBuV
(0.5 – 30) MHz	73 dBuV	60 dBuV

Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

Limits for conducted disturbance at the mains ports of class B ITE

Frequency Range	Quasi-peak	Average
(0.15 – 0.5) MHz	(66 – 56) dBuV	(56 - 46) dBuV
(0.5 – 5) MHz	56 dBuV	46 dBuV
(5 – 30) MHz	60 dBuV	50 dBuV

Note: The limits will decrease with the frequency logarithmically within 0.15 MHz to 0.5 MHz

TEST EQUIPMENT USED: <u>01, 02, 03, 07, 08, 09, 10, 60</u>

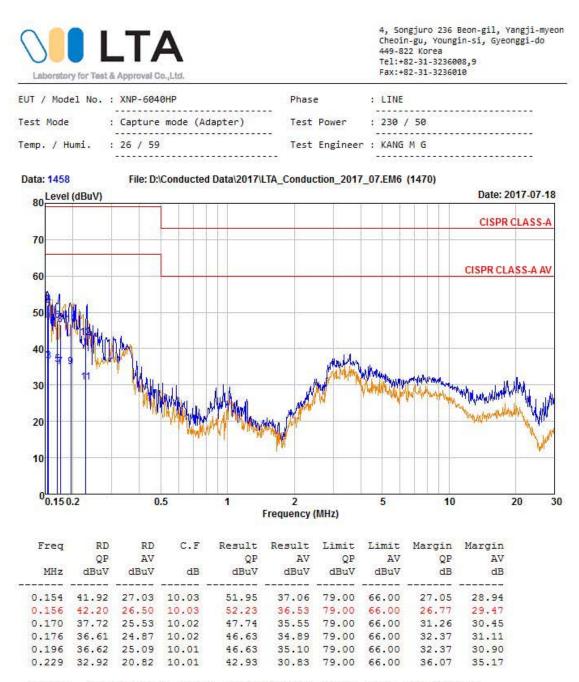
Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports in the frequency range 0.15 MHz to 30 MHz for class A equipment

Engineman Domoo	Voltage	e limits	Current limits		
Frequency Range	Quasi-peak	Average	Quasi-peak	Average	
(0.15 – 0.5) MHz	(97 – 87) dBuV	(84 – 74) dBuV	(53 – 43) dBuV	(40 - 30) dBuV	
(0.5 – 30) MHz	87 dBuV	74 dBuV	43 dBuV	30 dBuV	

Note 1: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

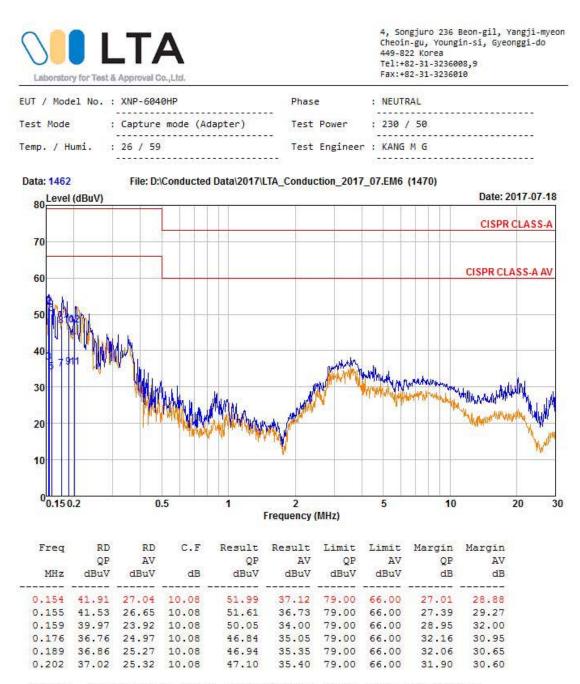
Note 2: The current and voltage disturbance limits are derived for use with an impedance stabilization network (ISN) which presents a common mode (asymmetric mode) impedance of 150 Ω to the telecommunication port under test (conversion factor is 20 log₁₀ 150/I= 44 dB)

Limits of conducted common mode (asymmetric mode) disturbance at telecommunication ports in the frequency range 0.15 MHz to 30 MHz for class B equipment

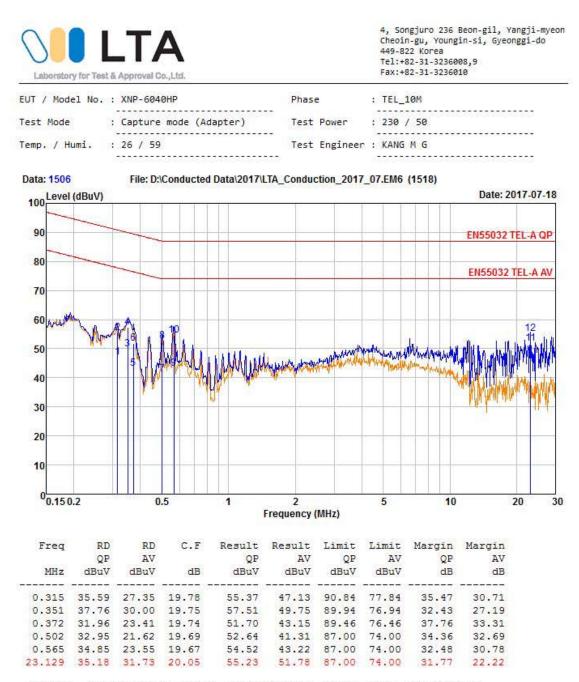

Enguana, Danga	Voltage	e limits	Current limits		
Frequency Range	Quasi-peak	Average	Quasi-peak	Average	
(0.15 – 0.5) MHz	(84 – 74) dBuV	(74 - 64) dBuV	(40 - 30) dBuV	(30 – 20) dBuV	
(0.5 – 30) MHz	74 dBuV	64 dBuV	30 dBuV	20 dBuV	

Note 1: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

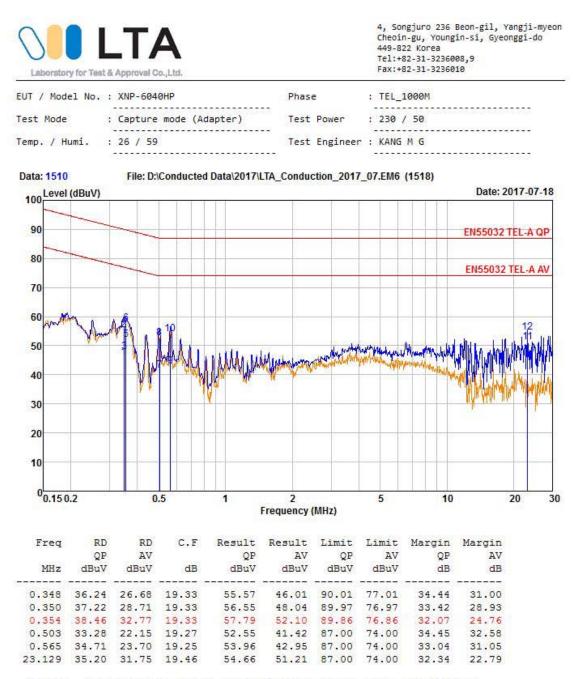
Note 2: The current and voltage disturbance limits are derived for use with an impedance stabilization network (ISN) which presents a common mode (asymmetric mode) impedance of 150Ω to the telecommunication port under test (conversion factor is $20 \log_{10} 150/I = 44 \text{ dB}$)


TEST EQUIPMENT USED: 01, 02, 03, 07, 08, 09, 10, 60

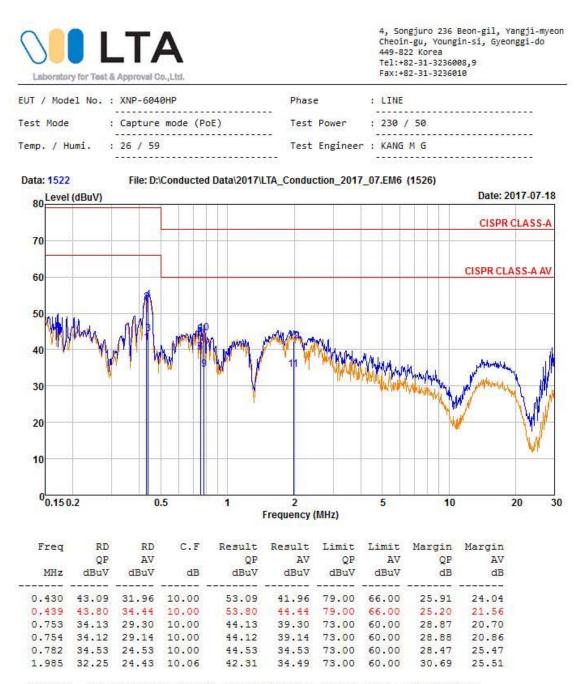
Conducted emissions (LINE) / Capture mode (Adapter)


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

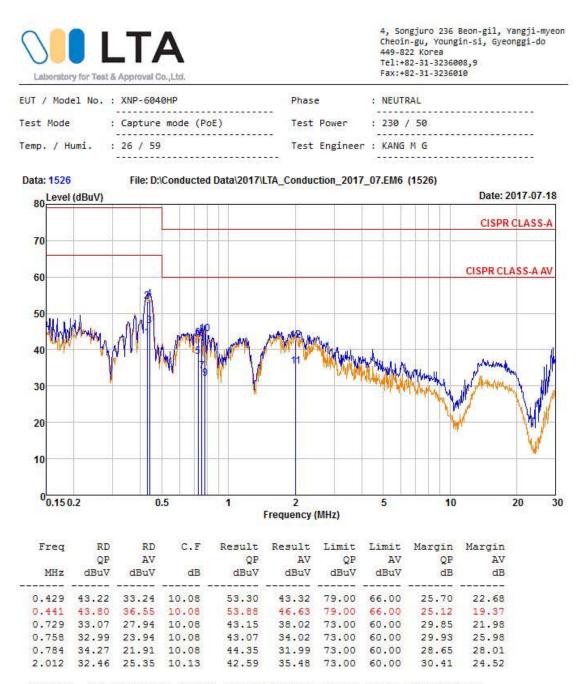
Conducted emissions (NEUTRAL) / Capture mode (Adapter)


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

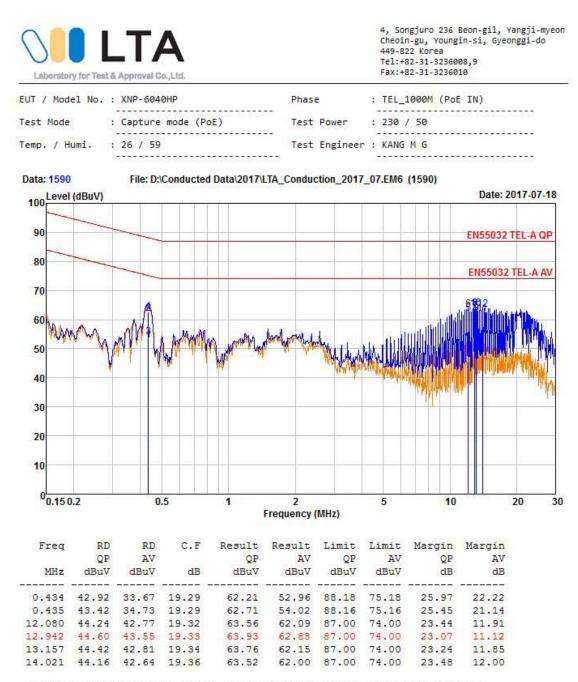
Conducted emissions (TEL_10 M) / Capture mode (Adapter)


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

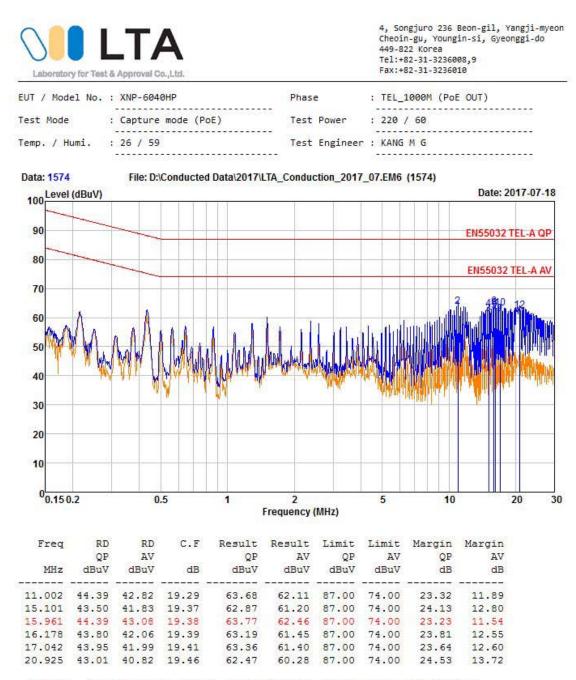
Conducted emissions (TEL_1000 M) / Capture mode (Adapter)


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted emissions (LINE) / Capture mode (PoE)


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted emissions (NEUTRAL) / Capture mode (PoE)


Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted emissions (TEL_1000 M) / Capture mode (PoE IN)

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted emissions (TEL_1000 M) / Capture mode (PoE OUT)

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

3.2.2 Radiated Emission

Definition:

The test assesses the ability of ancillary equipment to limit their internal noise from being radiated from the enclosure. We were performed the test according to LTA procedure LTA-QI-04.

Test method	: EN 55032:2015
Measuring Distance	: 10m
Measurement Frequency range	: 30 MHz – 1 000 MHz
Measurement RBW	: 120 kHz
Test mode	: Capture mode (Adapter, PoE)
Result	: Complies

Measurement Data:

- Refer to the Next page (Maximum emission configuration)

- No other emissions were detected at a level greater than 20 dB below limit

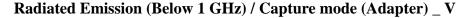
A sample calculation:

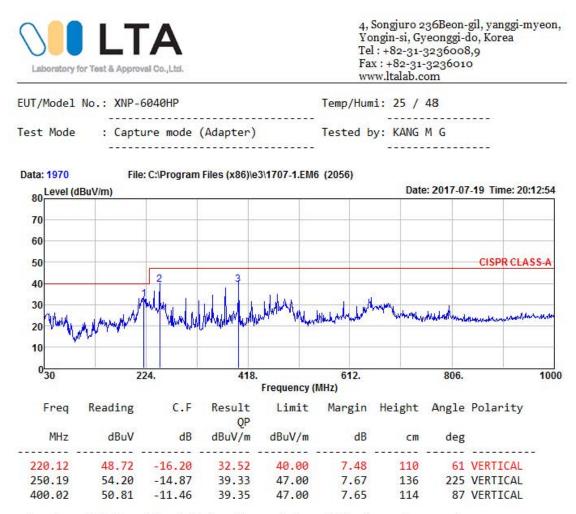
COR. F (correction factor)= Antenna factor + Cable loss- Amp.gain- Distance correction Emission Level= meter reading + COR.F

TEST EQUIPMENT USED: <u>13, 14, 15, 19, 21, 23, 60</u>

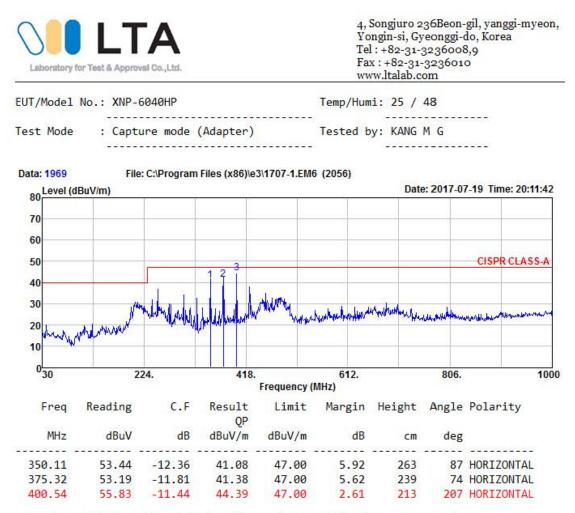
Limit of 10 m for below 1 GHz

CLASS A

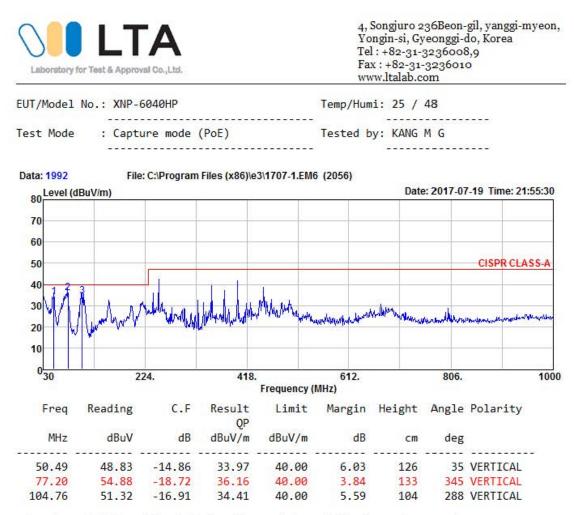

Frequency Range	Quasi-peak
(30 – 230) MHz	40 dBuV/m
(230 – 1 000) MHz	47 dBuV/m
CLASS B	
Frequency Range	Quasi-peak
(30 – 230) MHz	30 dBuV/m
(230 – 1 000) MHz	37 dBuV/m


Limit of 3m for above 1 GHz

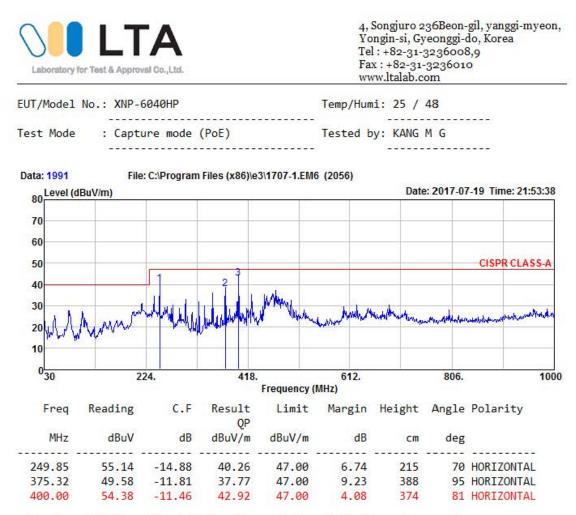
CLASS A


	Average Limit @ 3m	Peak limit @ 3m				
Frequency Range	(dBµV/m)	$(dB\mu V/m)$				
(1 000 – 3 000) MHz	56	76				
(3 000 – 6 000) MHz	60	80				
NOTE:	The lower limit applies at the transition frequency.					
CLASS B	CLASS B					
En an Dan an	Average Limit @ 3m	Peak limit @ 3m				
Frequency Range	(dBµV/m)	$(dB\mu V/m)$				
(1 000 – 3 000) MHz	50	70				
(3 000 – 6 000) MHz	54	74				
NOTE:	The lower limit applies at the transition frequency.					

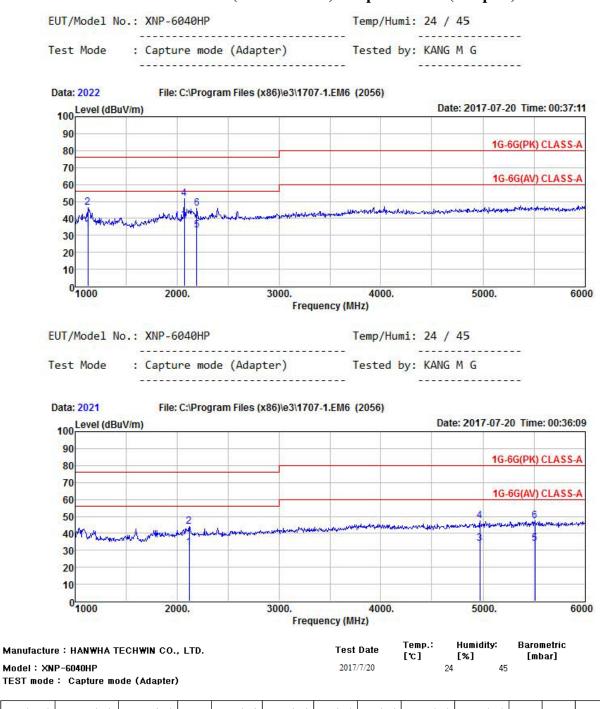
TEST EQUIPMENT USED: <u>13, 14, 15, 19, 21, 23, 60</u>



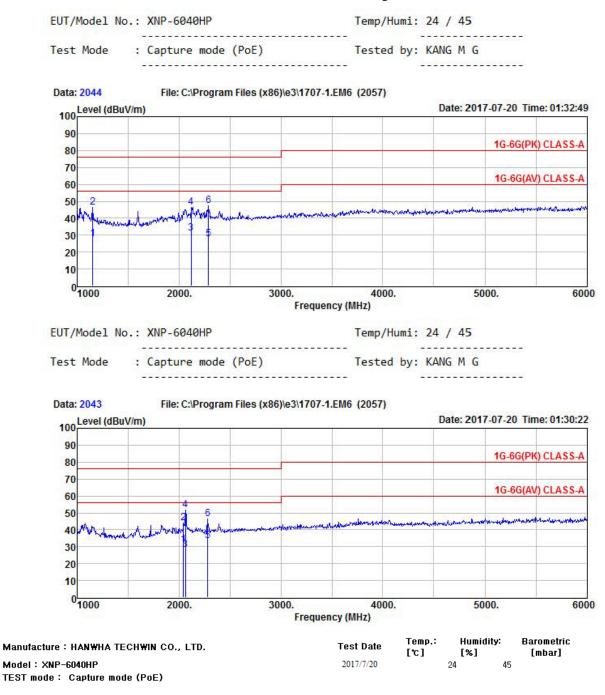
Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain


Radiated Emission (Below 1 GHz) / Capture mode (Adapter) _ H

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain


Radiated Emission (Below 1 GHz) / Capture mode (PoE) _ V

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain


Radiated Emission (Below 1 GHz) / Capture mode (PoE) _ H

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Radiated Emission (Above 1 GHz) / Capture mode (Adapter)

Freq.(MHz)	Reading(PK)	Reading(AV)	C.F	Result(PK)	Result(AV)	Limit(PK)	Limit(AV)	Margin(PK)	Margin(AV)	Height	Angle	Polarity
MHz	dBu∨	dBu∀	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	cm	deg	Hor/Ver
2120.0	46.4	33.7	0.09	46.48	33.77	76.0	56.0	29.52	22.23	100	227	Н
4965.0	37.0	23.6	12.78	49.74	36.36	80.0	60.0	30.26	23.64	100	234	Н
5505.0	35.1	22.0	14.49	49.62	36.47	80.0	60.0	30.38	23.53	100	158	Н
1125.0	54.8	40.5	-6.17	48.64	34.31	76.0	56.0	27.36	21.69	100	66	V
2070.0	42.2	48.1	-0,15	42.03	47.94	76.0	56.0	33.97	8.06	100	313	V
2195.0	54.1	35.1	0.17	54.25	35.24	76.0	56.0	21.75	20.76	100	142	V

Radiated Emission (Above 1 GHz) / Capture mode (PoE)

Freq.(MHz)	Reading(PK)	Reading(AV)	C.F	Result(PK)	Result(AV)	Limit(PK)	Limit(AV)	Margin(PK)	Margin(AV)	Height	Angle	Polarity
MHz	dBu∀	dBu∀	dB	dBuV/m	dBuV/m	dBu∀/m	dBuV/m	dB	dB	cm	deg	Hor/Ver
2045.0	46.4	33.5	-0.3	46.13	33.18	76.0	56.0	29.87	22.82	100	239	Н
2065.0	54.3	30.7	-0.18	54.11	30.51	76.0	56.0	21.89	25.49	100	346	н
2280.0	48.2	35.0	0.61	48.78	35.58	76.0	56.0	27.22	20.42	100	316	Н
1155.0	54.4	35.9	-5.88	48.57	29,99	76.0	56.0	27.43	26.01	100	314	V
2120.0	48.7	33.5	0.09	48.81	33.57	76.0	56.0	27.19	22.43	100	318	V
2290.0	48.7	29.5	0,69	49.42	30, 18	76.0	56.0	26.58	25.82	100	221	V

3.2.3 Harmonic Current (AC power input port)

Definition:

This part deals with the Limitation of harmonic currents injected into the public supply system. We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-3-2:2014
Test mode	:	- mode
Rated power	:	- W
Result	:	Not Applicable

Measurement Data:

Note : We did not test EN61000-3-2 (Harmonic current emissions) for the **XNP-6040HP** because equipment whose rated power is less or equal 75W don't need to be tested.

- Uncertainty(HAR) = +/-2.24 % (with a 95 % confidence level, k=2)

"It has been demonstrated that the HAR generator meets the specified requirements in the standard with at least 95 % confidence."

TEST EQUIPMENT USED: 25, 26

3.2.4 Voltage Variation and Flicking (AC power input port)

Definition:

This section is concerned with the limitation of voltage fluctuations and flicker impressed on the public low-voltage system.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-3-3:2013
Test mode	:	- W
Result	:	Not Applicable

Measurement Data:

Note: We did not test EN 61000-3-3 (Flicker) for the **XNP-6040HP** because of clause 6.1, this standard Predicate as follows: "Devices which produce no significant voltage dips or flicker with a certain probability have not to be tested."

- Uncertainty(FLK) = +/- 9.94 % (with a 95 % confidence level, k=2)

"It has been demonstrated that the FLK generator meets the specified requirements in the standard with at least 95 % confidence."

TEST EQUIPMENT USED: 25, 26

3.3 IMMUNITY

3.3.1 Electrostatic Discharge

Definition:

The test assesses the ability of the EUT to operate as intended in the event of an electrostatic discharge. We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-4-2 :2009
Temperature / Humidity / Pressure	:	25 °C / 46 %RH / 100 kPa
Discharge Impedance	:	$(330\pm10\%)\Omega/(150\pm10\%) \text{ pF}$
Type of Discharge (air discharge)	:	\pm 2kV, \pm 4 kV, \pm 8 kV
Type of Discharge (contact discharge)	:	$\pm 6 \text{ kV}$
Number of discharges at each point	:	10 of each polarity
Discharge Repetition on Rate	:	1 / sec
Test mode	:	Capture mode (Adapter, PoE)
Result	:	Complies

Measurement Data:

- Uncertainty(ESD) = $\pm - 5 \%$ (with a 95 % confidence level, k=2)

"It has been demonstrated that the ESD generator meets the specified requirements in the standard with at least 95 % confidence."

Criteria for compliance:

- There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the application of the discharges is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change.

1-2. Indirect Discharge

No.	Position	Kind of Discharge	Results	Remarks
1	НСР	HCP Contact		No reaction recognized
2	2 VCP Contact		Complies	No reaction recognized

1-2. Direct Discharge

No.	Position	Kind of Discharge	Result	Remarks
1	Enclosure	Contact	Complies	No reaction recognized
2	Camera	Air	Complies	No reaction recognized
3	Screw	Air	Complies	No reaction recognized

3.3.2 RF Electromagnetic Field

Definition:

The test assesses the ability of the EUT to operate as intended in the presence of a radio frequency electromagnetic field disturbance.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	: EN 61000-4-3:2006/A2:2010
Frequency range	: 80 MHz to 2700 MHz
Test level	: 10 V/m (measured unmodulated)
Amplitude Modulation	: AM, 80 %, 1 ^{kHz} Sinusoidal
	PM, 1 Hz (0.5s ON : 0.5s OFF)
Step size	: 1 % of fundamental
Dwell Time	: 3 s
Test mode	: Capture mode (Adapter, PoE)
Result	: Complies

Measurement Data:

- Uncertainty = ± 1.6 (with a 95 % confidence level, k=2.28)

"It has been demonstrated that the RS generator meets the specified requirements in the standard with at least 95 % confidence."

Port	Test level	Result		Remark
Pon	(V/m)	Horizontal	Vertical	Kennark
Enclosure	10	Complies	Complies	No reaction recognized

Criteria for compliance:

- There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicatiors occurs at a field strength of 3 V/m.

- For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at 10 V/m.

a) There is no permanent damage or change to the EUT.

b) At 3 V/m, any deterioration of the picture is so minor that the system could still be used.

c) There is no observable deterioration of the picture at 1 V/m

TEST EQUIPMENT USED: <u>29, 30, 31, 32, 33, 34, 35, 03, 28</u>

3.3.3 Electrical fast transients

Definition:

The test assesses the ability of the EUT to operate as intended in the event of fast transients presence on one of the input/output ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-4-4:2012
Cable length	:	< 3 m
Test level	:	2.0 kV (AC power input port)
		1.0 kV (Signal port)
Polarity	:	Negative/ positive
Repetition frequency	:	100 kHz
Test mode		Capture mode (Adapter, PoE)
Result	:	Complies

Measurement Data:

- Uncertainty = +/-10 % (with a 95 % confidence level, k=2)

"It has been demonstrated that the EFT/Burst generator meets the specified requirements in the standard with at least 95 % confidence."

- Refer to the next page

Criteria for compliance:

- There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the application of the discharges is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change.

MODE : Capture mode (Adapter)

power Line	Test level	Result	Remarks
L - N	+ 2 kV	Complies	No reaction recognized
L = N	- 2 kV	Complies	No reaction recognized

Signal Line	Test level	Result	Remarks
LAN	+ 1 kV	Complies	No reaction recognized
LAN	- 1 kV	Complies	No reaction recognized

power Line	Test level	Result	Remarks
L – N – PE	+ 2 kV	Complies	No reaction recognized
L – N – PE	- 2 kV	Complies	No reaction recognized
Signal Line	Test level	Result	Remarks
Dee IN OUT	+ 1 kV	Complies	No reaction recognized
PoE IN, OUT	- 1 kV	Complies	No reaction recognized

MODE : Capture mode (PoE)

TEST EQUIPMENT USED: <u>57, 28, 15, 58, 59</u>

3.3.4 Surge

Definition:

The test assesses the ability of the EUT to operate as intended in the event of surge presence on the AC main power input ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-4-5:2014
Test level	:	\pm 0.5 kV, \pm 1 kV (line to line)
		\pm 0.5 kV, \pm 1 kV, \pm 2 kV (line to ground),
		± 0.5 kV, ± 1 kV (signal line)
Polarity	:	Negative/ positive
Wave shape	:	1.2/ 50 μs pulse
Number of surges	:	5 (at each phase)
Test mode		Capture mode (Adapter, PoE)
Result	:	Complies

Measurement Data:

- Uncertainty = ± -10 % (with a 95 % confidence level, k=2)

"It has been demonstrated that the Surge generator meets the specified requirements in the standard with at least 95 % confidence."

- Refer to the next page

Criteria for compliance:

- There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the application of the discharges is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change.

TEST EQUIPMENT USED: 57, 28, 15, 58

Measurement Data:

MODE : Capture mode (Adapter)

Phase	Line	level	Result	Phase	Line	level	Result
	\mathbf{L} is $\mathbf{r}(\mathbf{L})$ to \mathbf{L} is $\mathbf{r}(\mathbf{N})$	+1 kV	Complies			+1 kV	Complies
	Line(L) to line(N)	-1 kV	Complies		Line(L) to line(N)	-1 kV	Complies
0°	Line(L) to ground(PE)	-	-	90°	Line(L) to ground(PE)	-	-
0	Line(L) to ground(FE)	-	-	90	Line(L) to ground(FE)	-	-
	Ling(N) to ground(DE)				-	-	
	Line(N) to ground(PE)	-	-		Line(N) to ground(PE)	-	-
	Ling(L) to $ling(N)$	+1 kV Complies		$\operatorname{Ling}(\mathbf{I})$ to $\operatorname{Ling}(\mathbf{N})$	+1 kV	Complies	
	Line(L) to line(N)	-1 kV	Complies		Line(L) to line(N)	-1 kV	Complies
1900	180° Line(L) to ground(PE)	-	-	270°	0° Line(L) to ground(PE)	-	-
180		-	-	270		-	-
	Ling(N) to ground(DE)	-	-		Line(N) to ground(PE)	-	-
	Line(N) to ground(PE)	-	-			-	-

Phase	Line	level	Result
_			-
_	-	_	-

MODE : Capture mode (PoE)

Phase	Line	level	Result	Phase	Line	level	Result
	Ling(L) to ling(N)	+1 kV	Complies		Ling(I) to $Ling(DI)$	+1 kV	Complies
	Line(L) to line(N)	-1 kV	Complies		Line(L) to line(N)	-1 kV	Complies
0°	Ling(L) to arrow 4(DE)	+2 kV	Complies	90°	Ling(L) to serve 4(DE)	+2 kV	Complies
01	Line(L) to ground(PE)	-2 kV	Complies	901	Line(L) to ground(PE)	-2 kV	Complies
	Line(N) to ground(DE)	+2 kV	Complies		Line(N) to ground(PE)	+2 kV	Complies
	Line(N) to ground(PE)	-2 kV	Complies			-2 kV	Complies
	Ling(L) to ling(N)	+1 kV	Complies		Line(L) to line(N)	+1 kV	Complies
	Line(L) to line(N)	-1 kV	Complies			-1 kV	Complies
180°	Ling(L) to arrow 4(DE)	+2 kV	Complies	2709	Ling(L) to serve 4(DE)	+2 kV	Complies
180*	180° Line(L) to ground(PE)	-2 kV	Complies	270°	270° Line(L) to ground(PE)	-2 kV	Complies
	Line(N) to ground(DE)	+2 kV	Complies		Ling(N) to ground(DE)	+2 kV	Complies
	Line(N) to ground(PE)	-2 kV	Complies		Line(N) to ground(PE)	-2 kV	Complies

Phase	Line	level	Result
_			-
	-	-	-

3.3.5 Conducted disturbances, induced by radio-frequency fields

Definition:

The test assesses the ability of the EUT to operate as intended in the presence of a radio frequency electromagnetic disturbance on the input/output ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-4-6:2014
Frequency range	:	$0.15^{\text{MHz}}-100$ MHz
Test level	:	10 Vrms unmodulated
Amplitude Modulation	:	AM, 80 %, 1 ^{kHz} Sinusoidal
Step size	:	1 % of fundamental.
Test mode	:	Capture mode (Adapter, PoE)
Result	:	Complies

Measurement Data:

- Uncertainty = \pm -1.25 dB (with a 95 % confidence level, k=2)

MODE : Capture mode (Adapter)

Port	Test level (Vrms)	Result	Remarks
Power Line	10	Complies	No reaction recognized

Port	Test level (Vrms)	Result	Remarks
LAN	10	Complies	No reaction recognized

TEST EQUIPMENT USED: <u>46, 47, 48, 03, 28, 51</u>

MODE : Capture mode (PoE)

Port	Test level (Vrms)	Result	Remarks
Power Line	10	Complies	No reaction recognized

Port	Test level (Vrms)	Result	Remarks
PoE IN, OUT	10	Complies	No reaction recognized

TEST EQUIPMENT USED: 46, 47, 48, 03, 28, 52

Criteria for compliance:

- There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators occurs at $U_0 = 130$ dBuV.
- For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at $U_0 = 140$ dBuV.
 - a) There is no permanent damage or change to the EUT.
 - b) At $U_0 = 130$ dBuV, any deterioration of the picture is so minor that the system could still be used.
 - c) There is no observable deterioration of the picture at $U_0 = 120 \text{ dBuV}$

3.3.6 Mains supply voltage dips, short interruptions

Definition:

The test assesses the ability of the EUT to operate as intended in the event of voltage dips and interruptions present on

the AC mains power input ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 61000-4-11:2004
Ut	:	230 Vac
Test mode	:	Capture mode (Adapter, PoE)
Result	:	Complies

Measurement Data:

- Uncertainty = ± -5 % (with a 95 % confidence level, k=2)

"It has been demonstrated that the Voltage dips generator meets the specified requirements in the standard with at least 95 % confidence."

Test Level %Ut	Voltage droop and interruptions %Ut	Duration of Reduction (period)	Result	Remarks
80	20	250	Complies	No reaction recognized
70	30	25	Complies	No reaction recognized
40	60	10	Complies	No reaction recognized
0	100	250	Complies	EUT took off during the test. After the test, EUT operated normally.

Criteria for compliance:

- Mains supply voltage variations

There shall be no damage, malfunction or change of status due to the different supply voltage conditions.

- Mains supply voltage dips and short interruptions

There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change.

During the 250 period power loss, in accordance with the standard, a UPS was used to maintain full operation of the unit.

TEST EQUIPMENT USED: 57, 28, 15, 58

3.3.7 Mains supply voltage variations

Definition:

The test assesses the ability of the EUT to operate as intended in the event of voltage variations present on the AC mains power input ports.

We were performed the test according to LTA procedure LTA-QI-04.

Test method	:	EN 50130-4 Clause 7
Supply Voltage maximum	:	<i>U</i> nom + 10 %
Supply Voltage minimum		<i>U</i> nom – 15 %
Ut	:	230 Vac
Test mode	:	Capture mode (Adapter, PoE)
Result	:	Complies

Measurement Data:

Unom = Nominal mains voltage. Where provision is made to adapt the equipment to suit a number of nominal supply voltages (e.g. by transformer tap changing), the above conditioning severity shall be applied for each nominal voltage, with the equipment suitably adapted. For equipment which is claimed to be suitable for a range of nominal mains voltages (e.g. 220/240 V) without adaptation, Umax = (Maximum Unom) + 10 %, and Umin = (Minimum Unom) p 15 %. In any case the range of Unom must include the European nominal mains voltage of 230 V.

2 Mains supply voltage variations

230 V, 50 Hz

Test Le	evelCondition	Test Level (V)	Result	Remarks
Unom	+10%	253	Complies	No reaction recognized
Unom	-15%	195.5	Complies	No reaction recognized

APPENDIX A

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment are identified by the Test Laboratory.

	Description	Model No.	Serial No.	Manufacturer	Interval	LAST Cal.
1	EMI TEST Receiver	ESR	101499	Rohde & Schwarz	1 year	Jul-17
2	Pulse Limiter	ESH3-Z2	100710	Rohde & Schwarz	1 year	Mar-17
3	DIGITAL THERMO HYGROMETER	TH-611	NONE	BODYCOM	1 year	Sep-16
4	DTV Signal Generator	MFG-100	15M2002	MFLO	1 year	Mar-17
5	Color TV Pattern Generator	PM-5518-TX	LO5333	Philips	-	-
6	LISN	ESH3-Z6	100378	Rohde & Schwarz	1 year	Sep-16
7	LISN(main)	ESH3-Z5	893045/017	Rohde & Schwarz	1 year	Mar-17
8	LISN(sub)	ENV216	100408	Rohde & Schwarz	1 year	Sep-16
9	ISN	ISN T800	27109	TESEQ	1 year	Jan-17
10	ISN	ENY81-CA6	101565	Rohde & Schwarz	1 year	Jan-17
11	CURRENT PROBE	EZ-17	100508	Rohde & Schwarz	1 year	Jan-17
12	LISN	ESH3-Z6	100378	Rohde & Schwarz	1 year	Sep-16
13	EMI TEST Receiver	ESCI7	100772	Rohde & Schwarz	1 year	Sep-16
14	Amplifier (25 dB)	8447D	2944A07974	HP	1 year	Sep-16
15	DIGITAL THERMO HYGROMETER	TESTEK-303A	TAEGUANG	-	1 year	Mar-17
16	STEP TRANSFORMER	INA6502	34270	SCHAFFNER	1 year	Sep-16
17	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	2 year	Apr-17
18	Biconical Antenna	VHA 9103	VHA 9103-2315	SCHWARZBECK	2 year	Apr-17
19	TRILOG Antenna	VULB9160	9160-3237	SCHWARZBECK	2 year	May-17
20	TRILOG Antenna	VULB9160	9160-3237	SCHWARZBECK	2 year	Apr-17
21	Amplifier (25 dB)	8449B	3008A00337	HP	1 year	Mar-17
22	Spectrum Analyzer (~ 26.5 @z)	E4407B	MY45108946	Agilent	1 year	Mar-17
23	HORN ANTENNA	3115	55005	ETS	2 year	May-17
24	HORN ANTENNA	3115	55005	ETS	2 year	Apr-17
25	Universal Power Analyzer	PM6000	1.00007E+11	Voltech Instruments	1 year	Mar-17
26	Reference Impedance Network	ES4152	9074424	NF Corp.	1 year	Sep-16
27	ESD Slimulator	ESS-2000	ESS0625187	NOISEKEN	1 year	Apr-17
28	Hygro-Thermograph	THB-36	0041557-01	ISUZU	1 year	Dec-16
29	Signal Generator	E4432B	MY41310632	Agilent	1 year	May-17
30	Power Meter	E4419B	GB38410133	Agilent	1 year	Jun-17
31	RF POWER AMPLIFIER	ITA0300KL- 300	0300KL 1507 001	INFINITECH	1 year	Aug-16
32	RF POWER AMPLIFIER	ITA2000KL- 120	200KL 1507 001	INFINITECH	1 year	Aug-16
33	RF POWER AMPLIFIER	ITA4500KL-70	4500KL 1507 001	INFINITECH	1 year	Aug-16
34	RF POWER AMPLIFIER	ITA0750KL- 300	0750KL 1507 001	INFINITECH	1 year	Aug-16
35	LogPer.Antenna (80 Mtz ~ 3 Gtz)	K9128	NONE	RAPA	-	-
36	Microphone	MP201	530147	BSWA	1 year	Nov-16
, 1	Sound Acoustic Tester	TST-1000	15065-A	TESTEK	1 year	Nov-16

Copyright © 2017, LTA Co., Ltd.

	Description	Model No.	Serial No.	Manufacturer	Interval	LAST Cal.
38	Horn Antenna	3115A	114105	ETS	2 year	Jul-16
39	Signal Generator	SMB 100A	177621	R&S	1 year	Mar-17
40	EFT Simulator	FNS-AX2	4000B01332	NoiseKen	1 year	Sep-16
41	Capacitive Coupling Clamp	CDN 8015	21240	SCHAFFNER	1 year	Sep-16
42	LIGHTNING SURGE SIMULATOR	LSS-6030	LSS02X0153	NOISEKEN	1 year	Sep-16
43	R-BOX (4x1000 HM)	INA 172	SL403-109	SCHAFFNER	1 year	-
44	CDN	CDN 117	20985	SCHAFFNER	1 year	-
45	CDN	CDN 118	20082	SCHAFFNER	1 year	-
46	Signal generator	SML03	103026/0013	R&S	1 year	Mar-17
47	POWER METER	NRVD	101689	R&S	1 year	Mar-17
48	RF Power Amplifier	FLL75A	1033	FRANKONIA	1 year	Dec-16
49	EM INJECTION CLAMP	TSIC-23	529	F.C.C	1 year	Jun-17
50	CDN (M1)	TSCDN-M1- 16A	7004	F.C.C	1 year	Sep-16
51	CDN (M2)	TSCDN-M2- 16A	7008	F.C.C	1 year	Sep-16
52	CDN (M3)	TSCDN-M3- 16A	7017	F.C.C	1 year	Sep-16
53	Coil	INA 702	132	SCHAFFNER	6 month	Apr-17
54	Magnetic Field Generator	MFO6502	34267	SCHAFFNER	6 month	Apr-17
55	Modula System	MODULA6100	34395	SCHAFFNER	1 year	Sep-16
56	TRILOG Antenna	VULB9168	577	SCHWARZBECK	2 year	Mar-17
57	Compact Generator	NX5	P1640185038	EMTEST	1 year	May-17
58	AC Power Source	Variac NX1- 260-16	P1648188071	EMTEST	1 year	May-17
59	Capacitive Coupling Clamp	CCI	P1703190739	EMTEST	1 year	Nov-17
60	TEST PROGRAM	AUDIX	-	e3_Ver: 5.5.201a	-	-

APPENDIX B

PERFORMANCE CRITERIA

Performance criteria

The variety and the diversity of the apparatus within the scope of this document makes it difficult to define precise criteria for the evaluation of the immunity test results.

If as a result of the application of the tests defined in this standard, the apparatus becomes dangerous or unsafe then the apparatus shall be deemed to have failed the test.

A functional description and a definition of performance by the manufacture and noted in the test report, based on the following criteria:

Electrostatic discharge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of discharge is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test (see Clause 6), after the conditioning.

Radiated electromagnetic fields

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators occurs at a field strength of 3 V/m.

For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at 10 V/m, providing.

(a) there is no permanent damage or change to the EUT

(e.g. no corruption of memory or changes to programmable setting etc.)

(b) at 3 V/m, any deterioration of the picture is so minor that the system could still be used; and (c) there is no observable deterioration of the picture at 1 V/m.

The EUT shall meet the acceptance criteria for the functional test(see Clause 6), after the conditioning.

Fast transient burst / slow high energy voltage surge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of the bursts is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test (see Clause 6), after the conditioning.

Slow high energy voltage surge

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the application of the surges is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test (see Clause 6), after the conditioning.

Conducted RF immunity

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators occurs at $U0 = 130 \text{ dB}\mu\text{V}$.

For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at $U0 = 140 \text{ dB}\mu V$, providing

(a) there is no permanent damage or change to the EUT

(e.g. no corruption of memory or changes to programmable settings, etc.)

(b) at U0 = 130 dB/ λ , any deterioration of the picture is so minor that the system could still be used, and

(c) there is no observable deterioration of the picture at U0 = 120 dBµN.

The EUT shall meet the acceptance criteria for the functional test(see Clause 6), after the conditioning.

Voltage dip/interruption / Voltage variation

There shall be no damage, malfunction or change of status due to the conditioning.

Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change. The EUT shall meet the acceptance criteria for the functional test(see Clause 6), after the conditioning.

Mains supply voltage variations

There shall be no damage, malfunction or change of status due to the different supply voltage conditions. The EUT shall meet the acceptance criteria for the functional test(see Clause 6), during the conditioning.

APPENDIX C

Measurement Uncertainty

- 1. Conducted Emission
- 2. Radiated Emission

1. Conducted Emission

	Duckabilitar	Probability Distribution (dB)		
Input Quantity	Probability Distribution	9 kHz – 30 MHz	Standard	
Cable loss(RG400)	Standard Deviation(SD)	± 0.061	10 th measurement	
Receiver corrections; -Sine wave voltage -Pulse amplitude response -Pulse repetition rate response	Rectangular ($\sqrt{3}$) Rectangular ($\sqrt{3}$) Rectangular ($\sqrt{3}$)	$\begin{array}{c} \pm \ 0.17 \\ \pm \ 0.02 \\ \pm \ 0.58 \end{array}$	Cal. Report Cal. Report Cal. Report	
LISN corrections (ENV216) ; -Voltage division factor	Normal $(k = 2)$	± 0.09	Cal. Report	
Mismatch ; - Receiver VRC* : $\Gamma i = 0.09$ -LISN VRC : $\Gamma g = 0.14(150 \text{ kHz})$ = 0.05(30MHz) - Uncertainty: 20log(1± $\Gamma i \Gamma g$)	U-type(√ 2)	± 0.89	Cal. Report	
System Repeatability	Standard Deviation(SD)	± 0.28	10 th measurement	
Combined measurement uncertainty Uc(y)	Normal	+ 0.73 - 0.73		
Expended measurement uncertainty (95.%,Confidence level,k = 2)dB	Normal $(k = 2)$	+ 1.46 - 1.46		

2. Below 1 GHz Radiated Emission

		Probability Di		
Input Quantity	Probability Distribution	Tri	Standard	
		3m	10m	
Antenna Factor		30 MHz – 1 GHz	30 MHz – 1 GHz	ANT Cal.
(VULB 9160)	Normal $(k = 2)$	± 2.00	± 2.00	uncertainty
Cable loss (HFB-5010/HFC12D)	Standard Deviation(SD)	± 0.14	± 0.14	10 th measurement
Receiver corrections; -Sine Wave Voltage	Normal $(k = 2)$	± 0.17	± 0.17	Cal. Report
-Pulse amplitude response	Normal $(k = 2)$	± 0.17 ± 0.58	± 0.17 ± 0.58	Cal. Report
-Pulse repetition rate response	Rectangular($\sqrt{3}$)	± 1.50	± 1.50	CISPR16-4-2
Antenna Directivity	Rectangular($\sqrt{3}$)	± 1.00	± 1.00	CISPR16-4-2
AF Height Dependence	Rectangular($\sqrt{3}$)	± 0.10	± 0.10	CISPR16-4-2
Phase Center Location	Rectangular($\sqrt{3}$)	± 0.20	± 0.20	CISPR16-4-2
Separation Distance	Rectangular($\sqrt{3}$)	± 0.30	± 0.30	CISPR16-4-2
Uncertainty of Site	Triangular($\sqrt{6}$)	± 2.97	± 2.97	NSA
Mismatch ; - Receiver VRC* : $\Gamma i = 0.09$ -ANT. VRC : $\Gamma g = 0.09$ - Uncertainty: 20log(1± $\Gamma i \Gamma g$)	U-type ($\sqrt{2}$)	± 0.54	± 0.54	CISPR16-4-2
Pre-amp.	Normal $(k = 2)$	± 0.14	± 0.14	Cal. Report
System Repeatability	Standard Deviation(SD)	± 0.60	± 0.60	10 th measurement
Combined measurement uncertainty Uc(y)	Normal	+ 1.97 - 1.97	+ 1.97 - 1.97	
Expended measurement uncertainty (95%,Confidence level,k=2)dB Note:VRC(Voltage Reflection Coefficient	Normal(k = 2)	30 MHz – 1 GHz + 3.94 - 3.94	30 MHz – 1 GHz + 3.94 - 3.94	

Note:VRC(Voltage Reflection Coefficient)

3. Above 1 GHz Radiated Emission

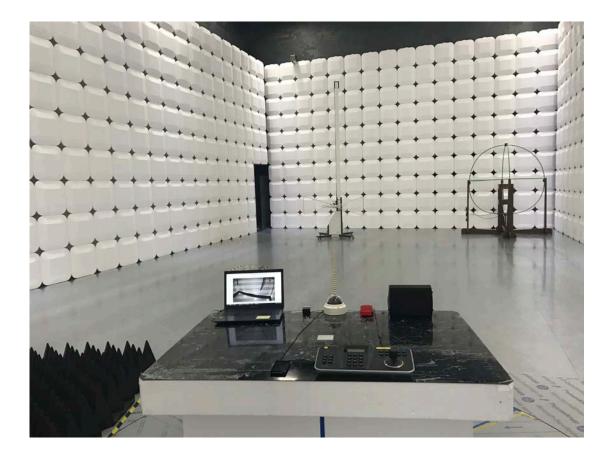
		Probability Distribution (dB)		
Input Quantity	Probability Distribution	HORN	Standard	
Antenna Factor (ETS 3115)	Normal (k=2) (normal)	1 GHz - 6 GHz ± 1.00	ANT Cal. uncertainty	
Cable loss (SUHNER MULTIFLEX microwave cables)	Standard Deviation(SD)	± 0.32	10 th measurement	
Receiver corrections; -Sine Wave Voltage -Pulse amplitude response -Pulse repetition rate response	Normal (k = 2) Normal (k = 2) Rectangular($\sqrt{3}$)	${\scriptstyle \pm \ 0.17} \ {\scriptstyle \pm \ 0.58} \ {\scriptstyle \pm \ 1.50}$	Cal. Report Cal. Report CISPR16-4-2	
Antenna Directivity	Rectangular($\sqrt{3}$)	± 1.00	CISPR16-4-2	
AF Height Dependence	Rectangular($\sqrt{3}$)	± 0.10	CISPR16-4-2	
Phase Center Location	Rectangular($\sqrt{3}$)	± 0.20	CISPR16-4-2	
Separation Distance	Rectangular($\sqrt{3}$)	± 0.30	CISPR16-4-2	
Uncertainty of Site	Standard Deviation(SD)	± 0.13	SVSWR 10 th measurement	
Mismatch ; - Receiver VRC* : $\Gamma i = 0.09$ -ANT. VRC : $\Gamma g = 0.09$ - Uncertainty: $20\log(1\pm\Gamma i \Gamma g)$	U-type ($\sqrt{2}$)	± 0.54	CISPR16-4-2	
Pre-amp.	Normal $(k = 2)$	± 0.60	Cal. Report	
System Repeatability	Standard Deviation(SD)	± 0.34	10 th measurement	
Combined measurement uncertainty Uc(y)	Normal	+ 1.73 - 1.73		
Expended measurement uncertainty (95%,Confidence level,k=2)dB	Normal(k = 2)	1 GHz - 6 GHz + 3.46 - 3.46		

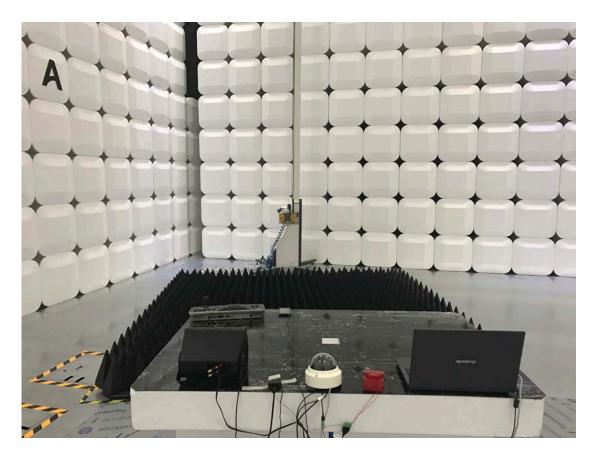
Note:VRC(Voltage Reflection Coefficient)

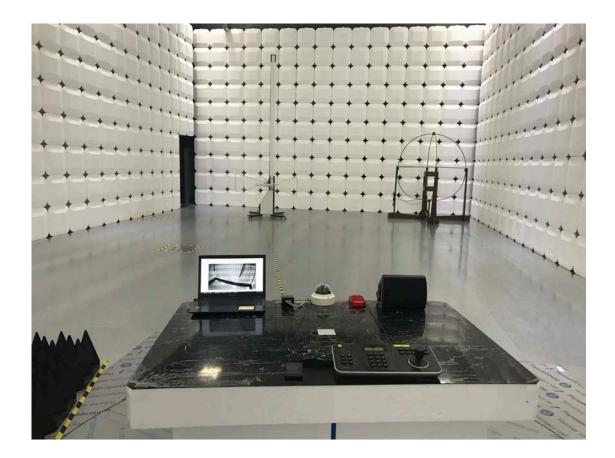
APPENDIX D

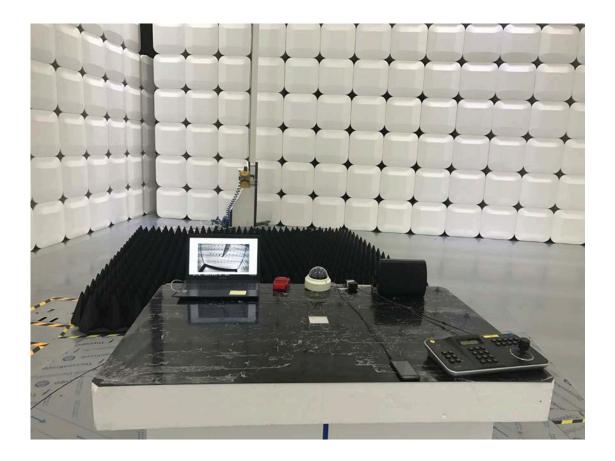
PHOTOGRAPHS

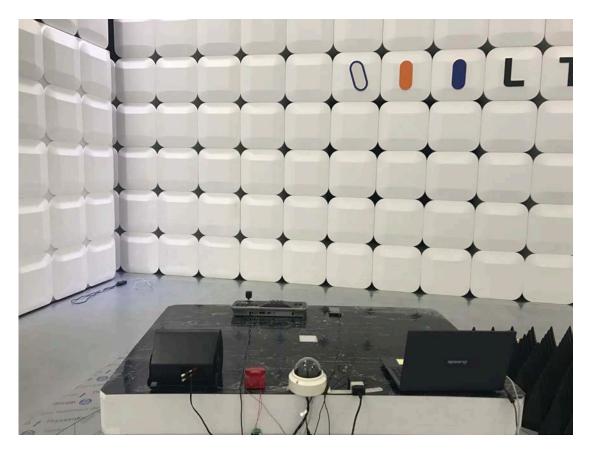
Conducted emission (Maximum emission configuration) / Capture mode (Adapter)

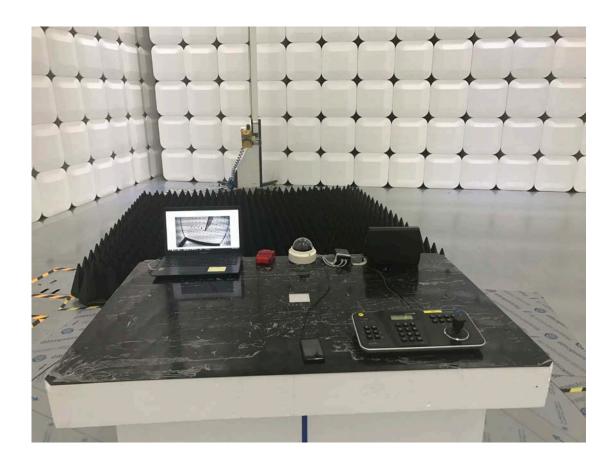


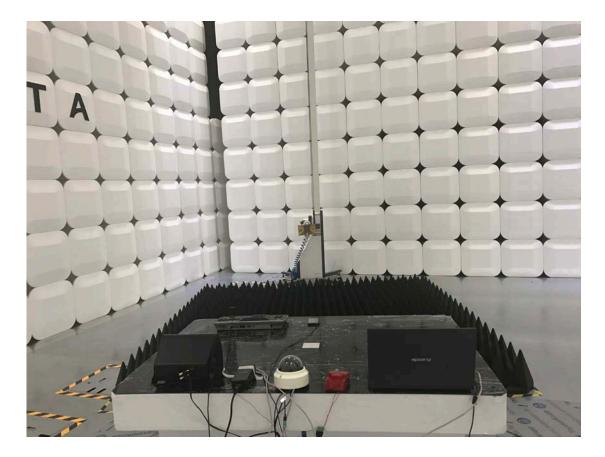

Conducted emission (Maximum emission configuration) / Capture mode (PoE)


Radiated emission (Maximum emission configuration)-Below 1 GHz / Capture mode (Adapter)


Copyright © 2017, LTA Co., Ltd.


Radiated emission (Maximum emission configuration)-Below 1 GHz / Capture mode (PoE)


Radiated emission (Maximum emission configuration) – Above 1GHz / Capture mode (Adapter)

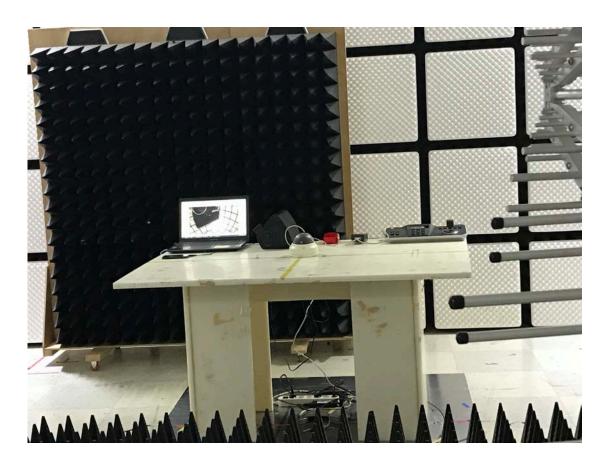


Copyright © 2017, LTA Co., Ltd.

Radiated emission (Maximum emission configuration) – Above 1GHz / Capture mode (PoE)

Electrostatic discharge / Capture mode (Adapter)

Electrostatic discharge / Capture mode (PoE)



Copyright © 2017, LTA Co., Ltd.

RF Electromagnetic Field / Capture mode (Adapter)

RF Electromagnetic Field / Capture mode (PoE)

Copyright © 2017, LTA Co., Ltd.

Electrical fast transients / Capture mode (Adapter)

Electrical fast transients / Capture mode (PoE)

Copyright © 2017, LTA Co., Ltd.

Surge / Capture mode (Adapter)

Surge / Capture mode (PoE)

Copyright © 2017, LTA Co., Ltd.

Conducted Disturbances, Induced by Radio-Frequency Fields / Capture mode (Adapter)

Conducted Disturbances, Induced by Radio-Frequency Fields / Capture mode (PoE)

Copyright © 2017, LTA Co., Ltd.

Main supply voltage dips, short interruptions / Capture mode (Adapter)

Main supply voltage dips, short interruptions / Capture mode (PoE)

Copyright © 2017, LTA Co., Ltd.

